Three New Anthraquinones from Polygonum cillinerve

Huan Yang QI, Chao Feng ZHANG, Mian ZHANG, Jian Qun LIU, Zheng Tao WANG*

Department of Pharmacognosy, China Pharmaceutical University, Nanjing 210038

Abstract: Three new anthraquinones, emodin-8- β -D-(2"-*O*-coumarate)glucoside **1**, emodin-8- β -D-(6'-*O*-acetyl)glucoside **2** and physicon-8- β -D-(6'-*O*-acetyl)glucoside **3**, were isolated from the roots of *Polygonum cillinerve* and their structures were established by spectroscopic methods. The biological activity indicated that compound **1** had the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (the IC₅₀ = 8.5 µmol/L), and compound **1-3** showed no activities against HL-60 and BGC-823 cells by MTT method *in vitro*.

Keywords: Polygonum cillinerve, anthraquinone, antioxidant activity, cytotoxic activity.

Polygonum cillinerve (Nakai) Ohwi (Polygonaceae), with the Chinese name 'HongYao', has been used in traditional Chinese medicine^{1, 2} as an herbal remedy for acute stomachache and menoxenia. Recently it has been found to have obvious antioxidant activities³. From the roots of this plant, three new anthraquinones were isolated and named as emodin-8- β -D-(2"-O-coumarate)glucoside **1**, emodin-8- β -D-(6'-O-acetyl)glucoside **2** and physicon-8- β -D-(6'-O-acetyl)glucoside **3**. Their structural elucidation was described, and spectral data were listed in **Table 1**.

Figure 1 The structures of compound 1-3

* E-mail: wangzht@hotmail.com

		1		2		3		4	
No.	HMBC (C→H)	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	$\delta_{\rm H}$	$\boldsymbol{\delta}_C$	$\delta_{\rm H}$	δ_{C}
1	Н-2		161.5		164.3		164.8		164.3
2	H-4	7.01(br.s)	123.9	7.18(br.s)	119.5	7.20(br.s)	119.5	7.00(d,J=1.9)	119.4
3			146.6		147.1		147.3		147.0
4	H-2	7.36(br.s)	131.8	7.49(br.s)	124.4	7.51(br.s)	124.4	7.29(s)	124.3
4a			118.9		132.3		132.2		132.2
5	H-7	7.28(d,J=2.3)	108.5	7.33(d,J=2.4)	108.6	7.41(d, <i>J</i> =2)	107.9	7.16(s)	108.6
6	H-7		164.1		160.9		160.4		161.2
7	H-5	7.06 (d,J=2.3)	109.2	6.99(d,J=2.3)	108.4	7.14(d,J=2.6)	106.2	7.46(s)	108.5
8	H-1′,7		160.4		161.9		161.8		161.9
8a	H-5,7		113.4		113.6		106.2		113.5
9			185.8		186.6		186.6		186.6
9a	H-2,4		114.1		114.6		114.6		114.6
10	H-4,5		182.0		182.3		182.0		182.2
10a			136.3		136.7		136.7		136.6
1′	H-2′	5.34(d, <i>J</i> =8.5)	99.0	5.13(d,J=7.6)	100.5	5.27(d, <i>J</i> =7.6)	100.4	5.07(d,J=7.6)	101.1
2'			77.0		76.4		76.4		77.5
3′	H-2′		74.0		73.4		73.3		73.4
4′			69.7		70.0		70.0		69.7
5′	H-2´,3´		72.9		74.1		74.1		76.6
6′			60.4		63.4		63.6		60.8
-CH ₃	H-2,4	2.33(s)	21.2	2.43(s)	21.6	2.44(s)	21.5	2.40(s)	21.5
-COCH	[3			2.04(s)	170.4,	2.02(s)	170.3,		
					20.7		20.6		
-OCH ₃						4.00(s)	56.3		
1″	H-2",7"		125.1						
3"(5")	H-5″	7.43(d,J=8.6)	130.0						
2"(6")	H-6″	6.73(d, <i>J</i> =8.6)	115.5						
4″	H-3",5",2",6"		159.5						
8″		6.31(d,J=15.9))144.1						
7″	H-8″	7.53(d,J=15.9)114.6						
9″	H-8",7",2'		165.3						

Table 1 NMR data for compound **1-4** (δ ppm, *J* Hz)

NMR spectra were obtained at 500 (125) MHz and recorded in DMSO-d₆.

Compound **1** was isolated as yellow amorphous powder, mp. 233-234°C. HREI-MS analysis revealed the molecular formula to be $C_{30}H_{27}O_{12}$ (*m/z*: 579.1485 [M+H]⁺, calcd. 579.1503). The IR (KBr) showed absorption bands for hydroxyl (3410 cm⁻¹), carbonyl groups (1695, 1633cm⁻¹) and benzene ring (1602, 1573cm⁻¹) moieties. The characteristic proton signals of known compound emodin-8- β -D-glucoside **4** can be seen in the ¹H NMR spectrum at δ 13.12 (*br.s*,1H, 1-OH), 7.36 (*br.s*, 1H, H-4), 7.28 (*d*,1H, *J*=2.3Hz, H-5), 7.06 (*d*,1H, *J*=2.3Hz, H-7), 7.01 (*br.s*,1H, H-2), 2.33 (*s*,3H, 3-CH₃) and a glucose moiety at δ 5.34 (d,1H, *J*=8.5Hz) and δ 5.31~3.35(m, 6H), which is also determined by comparing its ¹³C NMR spectral data with that of **4**⁴. In the ¹H NMR spectrum, there are signals of two olefinic protons at δ 7.53 (*d*, 1H, *J*=15.9 Hz, H-8″) and 6.31 (*d*, 1H, *J*=15.9 Hz, H-7″). By extensive analysis ¹³C NMR, HMQC and EI-MS (*m/z* 431[M-H]⁻ and 269[M-H]⁻) spectra of compound **1**, its structure was deduced to have two groups of emodin-8- β -D-glucoside and coumaric acid units. The connectivity

1052 Three New Anthraquinones from *Polygonum cillinerve*

of these units were established by interpreting the significant HMBC signals, which exhibited long-rang correlations between proton signal at δ_H 5.34 (H-1') with carbon signal at δ_C 160.4 (C-8), δ_H 5.09 (H-2') with δ_C 165.3 (C-9"), indicating glycosylation at C-8 of emodin by a coumaric acid (9" \rightarrow 2') glucose moiety, which is determined by comparing its NMR spectral data with that of pieceid-2"-*O*-coumarate³. Compound **1** was thus determined to be emodin-8- β -D-(2"-*O*-coumarate)glucoside.

Compound 2 and 3 were isolated as yellow amorphous powder. In comparison with the NMR spectra data of emodin-8- β -D-glucoside 4⁴, the signals of 2 and 3 were in agreement with those of 4, except for an extra signal of acetyl group [δ_H 2.02 (s, 3H); δ_C 170.4, 20.7] and methoxyl group [δ_H 4.00(s, 3H); δ_C 56.3]. These deductions were further supported by the EI-MS spectra (2: m/z 473[M-H]⁻ and 269[M-H]⁻; 3: m/z 489 [M+H]⁺ and 285[M+H]⁺). Comparison of the ¹³C NMR spectra of 4, the chemical shift of δ_C 60.8 (C-6') was downfield shifted to δ_C 63.6 (C-6') in 2, 3. These changes indicated that the acetyl group was at C-6' in both 2 and 3. Therefore, compounds 2 and 3 were determined as emodin-8- β -D-(6'-*O*-acetyl)glucoside and physicon-8- β -D-(6'-*O*-acetyl)glucoside, respectively.

The biological activity study indicated that compound **1** had the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (the $IC_{50}=8.5 \mu mol/L$), and compound **1-3** showed no activities against HL-60 and BGC-823 cells by MTT method *in vitro*, see **Table 2**.

Sample	Concentration	HL-60	BGC-823 Inhibitory%		
Sample	µg/ml	Inhibitory%			
1	0.1	0.00	22.45		
	1	20.30	15.31		
	10	0.00	16.72		
2	1	0.00	0.00		
	10	38.93	2.02		
3	1	0.00	7.29		
	10	24.68	7.29		
* Cisplatin	1	71.29	10.78		
	10	94.45	94.87		

Table 2Cytotoxic activities of compound 1-3 (n=3)**

*Positive control

**Conducted by the national laboratory of New Drug Screen of China Pharmaceutical University

References

- 1. State Administration of Traditional Chinese Medicine People's Republic of China, *Zhong Hua Ben Cao*, Shanghai science and technology press, **1999**, Tomus, 2, p.650.
- Agendae Academiae Sinicae Edita, Flora Reipublicae Popularis Sinicae, Science press, 1998, Tomus, 25(1), p.103.
- 3. J. P. Lee, B. S. Min, R. B. An, et al., Phytochemistry, 2003, 64(5), 759.
- 4. J. L. Li, A. Q. Wang, J. S. Li, et al., Chinese Traditional and Herbal Drugs, 2000, 31(5), 321.

Received 12 October, 2004